expoente caraterístico - significado y definición. Qué es expoente caraterístico
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es expoente caraterístico - definición

OPERAÇÃO MATEMÁTICA
Expoente; Potenciação; Exponencial; Expoentes
  • Gráfico da função exponencial (base 2).

Exponenciação         
Exponenciação ou potenciação é uma operação matemática, escrita como an, envolvendo dois números: a base a e o expoente n. Quando n é um número natural maior do que 1, a potência an indica a multiplicação da base a por ela mesma tantas vezes quanto indicar o expoente n, isto é,José Adelino Serrasqueiro, Tratado de Álgebra Elementar, p.
Exponencial         
adj. Mathem.
Que tem como expoente uma quantidade variável ou desconhecida.
f.
Quantidade exponencial.
(De exponente)
potenciação         
sf (potenciar+ção) Ato ou efeito de potenciar; elevação a potência.

Wikipedia

Exponenciação

Exponenciação ou potenciação é uma operação matemática, escrita como an, envolvendo dois números: a base a e o expoente n. Quando n é um número natural maior do que 1, a potência an indica a multiplicação da base a por ela mesma tantas vezes quanto indicar o expoente n, isto é,

da mesma forma que a multiplicação de n por a pode ser vista como uma soma de n parcelas iguais a a, ou seja, O expoente geralmente é indicado à direita da base, aparecendo sobrescrito ou separado da base por um circunflexo. Pode-se ler an como a elevado à n-ésima potência, ou simplesmente a elevado a n. Alguns expoentes possuem nomes específicos, por exemplo, a2 costuma ser lido como a elevado ao quadrado , a3 como a elevado ao cubo e a4 como a elevado a quarta potência. Assim sucessivamente.

A potência an também pode ser definida quando n é um inteiro negativo, desde que a seja diferente de zero. Não existe uma extensão natural para todos os valores reais de a e n, apesar de que quando a base é um número real positivo é possível definir an para todo número real n, e até mesmo para números complexos através da função exponencial ez. As funções trigonométricas podem ser representadas em termos da exponenciação complexa.

Na resolução de sistemas de equações diferenciais lineares utiliza-se um tipo de exponenciação em que os expoentes são matrizes.

A potenciação também é usada em várias outras áreas, incluindo economia, biologia, física e ciência da computação, com aplicações tais quais juros compostos, crescimento populacional, cinética química, comportamento de ondas e criptografia de chave pública.